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Theory of beam-plasma instability in a periodic plasma-filled waveguide
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The beam-plasma wave interaction in a periodic plasma-filled waveguide is treated in a mathematically
correct manner on the basis of the integral equation~IE! method. It has been shown that the relevant boundary-
value problem could be reduced to an IE with a singular kernel for the longitudinal component of the electric
field on the waveguide axis. The regularization of the IE was performed by extracting the static part of the
kernel. The resulting IE of the second kind with a regular kernel, being rather convenient for a numerical
analysis, is treated in a quasistatic approximation as a spectral problem. First-order expressions for eigenfunc-
tions, and an infinite set of dispersion relations linking a wave number and frequency of plasma oscillations
which separate radial branches of plasma oscillations from axial ones, have been obtained in the closed
analytical form, thus enabling us to avoid the problem with the so-called ‘‘dense’’ spectrum. The solutions of
the relevant ‘‘cold’’ dispersion relations establish a periodical dependence of the frequency on the wave
number over several periods within the accuracy of order of the neglected terms. In the presence of an electron
beam they turn out to be unstable near frequencies providing the resonances of the beam with spatial plasma
harmonics. Evaluations of the instability saturation level predict a more efficient beam-plasma wave energy
transfer compared with those following from a conventional theoretical analysis based on the formulation of a
dispersion relation in terms of an infinite determinant, with following truncation of the latter to the finite sized
relation.@S1063-651X~99!10011-4#

PACS number~s!: 52.40.2w, 52.25.2b
ti
or
lli-
t
am

a
se
w
n
e
e
pe

wi

ro
d-
op

o
g

ed
ct
v

ort

in
than
ob-
f
s

tud-
n.
fi-

the
pa-

of
for

he
os-

an
re
ne
u-
ar-
ion
ber

o
hus,
cal
ve

rin
ta
I. INTRODUCTION

To date vacuum microwave tubes with intense relativis
electron beams~REB’s! remain the most attractive means f
producing high power microwaves in centimeter and mi
meter wave ranges@1,2#. However, increasing the outpu
power by using more intense REB’s is possible if the be
currents are well below the space-charge-limit current@3#.
When the beam current becomes comparable with the sp
charge-limit current, the beam-wave energy transfer es
tially decreases. Therefore a further increase of output po
can be achieved in the presence of background plasma i
interaction chamber, which provides space-charge field n
tralization @4#. A notable enhancement of the output pow
due to the presence of a plasma was recently realized ex
mentally for several types of microwave tubes@5–9#. It has
been thoroughly demonstrated that introducing a plasma
a proper density and radial profile results in an increase
the operation efficiency and frequency bandwidth, and p
vides the possibility to operate with significantly lower gui
ing magnetic fields and to control the output power and
eration frequency smoothly. However, the presence
plasma in the slow wave structure can lead to crucial chan
of its electrodynamic properties which are not fully studi
and realized so far. Plasma influences such as a diele
medium on the electrodynamic properties of the microwa
tubes, were studied experimentally@10,11# and theoretically
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@12–14# in many papers; the plasma medium can supp
many of its own propagating waves in the rangev,Ve ,
whereVe is the plasma frequency, andv is the frequency of
wave, which can efficiently interact with the beam@15,16#.

Unfortunately, dispersion properties of plasma waves
periodical waveguides have been studied much less
those of electromagnetic ones, in spite of experimental
servations of the latter@17#. In order to interpret the results o
experiment of Ref.@5#, the beam excitation of plasma wave
in a corrugated waveguide at a low plasma density was s
ied in Ref.@18# on the basis of a spatial harmonic expansio
The dispersion relation was obtained in the form of an in
nite determinant, and was solved by its truncation to
finite size determinant, accounting for a finite number of s
tial harmonics. Values obtained for the spatial growth rate
plasma waves turned out to be significantly less than that
the electromagnetic wave instability. Trying to explain t
results of experiments with plasma-filled backward wave
cillators @6#, the authors of Ref.@19# revealed that plasma
waves originate in the so-called ‘‘dense’’ spectrum when
infinite number of radially and axially shifted branches a
located in a finite frequency band, and separation of o
branch from others is practically impossible. Moreover, n
merical analysis performed for a large number of spatial h
monics showed that the solution of the dispersion relat
loses the property of periodicity with respect to wave num
required by the Floquet theorem@20#. On the basis of these
results in Ref.@20#, it was concluded that it is impossible t
obtain a reasonable dispersion relation in such a way. T
the problems of beam-plasma instability in the periodi
waveguides, and its influence on plasma-filled microwa
device operation, are still open.
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In this paper an approach to the analysis of the be
plasma instability is suggested. It is based on the inte
equation~IE! method@21,22#, which seems to be the mos
feasible one for an analysis of multiwave and multimod
regimes. Therefore, it can be expected that it also will
fruitful for the treatment of systems with ‘‘dense’’ spectra
which, in principle, all plasma-filled periodical structure
should refer.

It is shown that the dispersion relation obtained pre
ously in the form of an infinite determinant@16-18# can be
represented in terms of a homogeneous singular IE for
unknown total longitudinal electric field on the wavegui
axis. It is well known from the general theory of the IE th
the formulation of spectral problems in such a manner
quite reasonable. Moreover this formulation is frequen
used in the theory and computations of various element
microwave technique such as thin-film periodic structu
@23#, groove waveguides@24#, microstrip lines@25#, etc. Due
to the ability to take the multimodal content of the fiel
accurately into account, in our case such a formulation
lows us to obtain not only more precise results, but gives
the opportunity to obtain more insight about the dispers
properties of the plasma waves in periodical waveguides
particular it gives us the unique chance to avoid the prob
of the ‘‘dense’’ spectrum, allowing us to separate the rad
plasma modes from the axial ones. Our approach also
motes an understanding of numerical troubles mentione
Ref. @20#, and finding a way to overcome them.

The initial singular IE after regularization was treat
analytically in a quasistatic approximation. From the requi
ment of periodicity of the general solution, an infinite set
dispersion relations was obtained. Each of these corresp
to the certain axially shifted branch of radial plasma mod
Any of the dispersion relations obtained can be conside
independently, providing complete information about t
dispersion properties of plasma waves, the distribution
fields within the waveguide, and the growth rate of the bea
plasma instability. The results of our analysis indicate t
the instability of plasma waves in the case of a low dens
plasma~no beam resonance with the lowest spatial plas
harmonic! can be more efficient than that predicted in t
framework of the conventional analysis@18#. It can lead to a
more effective beam-plasma wave energy transfer and
widening of the region of unstable frequencies and wa
numbers.

The remainder of the paper is organized as follows.
Sec. II our theoretical model is described with an example
a planar periodic waveguide filled with a longitudinally ma
netized plasma and driven by a thin sheet electron beam.
shown that the initial IE for a longitudinal electric field o
the waveguide axis has a singular kernel, and the simp
method of its regularization is proposed. The resulting IE
the second kind is treated in the quasistatic approximatio
Sec. III. The first-order closed form solution and the gene
dispersion relation in the quasistatic approximation is
rived in Sec. IV. The infinite set of ‘‘cold’’ dispersion rela
tions and their solutions, as well as a procedure of avoid
the ‘‘dense’’ spectrum, are described in Sec. V. Instabilit
of Cherenkov type are found and analyzed in Sec. VI. Th
can be interpreted as resonant interactions of the beam
-
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the highest spatial harmonics of the plasma wave field. C
clusions and remarks are contained in Sec. VII.

II. THEORETICAL MODEL

Normally the model of an infinitely long periodic axisym
metric waveguide is used for a consideration of wave p
cesses in high-power plasma-filled devices such as BWO
TWT’s and some others. Since this paper is devoted, first
exploring the general qualitative issues concerning the
havior of systems with a ‘‘dense’’ spectrum, we restrict ou
selves to the case of a planar geometry, which gives us a
chance to obtain a number of results in an analytical fo
which greatly promotes the development of a correct qu
tative analysis of such an intricate question.

Thus we, consider a planar symmetrical metallic wav
guide with arbitrary periodic walls filled with the ‘‘cold’’
collisionless homogeneous plasma~see Fig. 1! and driven by
an infinitesimally thin sheet electron beam located symme
cally at distancesx56xb from the waveguide axis. An in-
finitely large magnetic field is applied along thez axis. All
wave perturbations assumed to be of TM polarization a
into symmetrical with respect to thez axis @Ez(x)5Ez
(2x)#, allowing one to consider only the regionx.0.

Following the Floquet theorem, we can represent t
fields in the waveguide as a superposition of spatial harm
ics,

A~x,z,t !5 (
n52`

`

An~x!exp~ ihnz2 ivt !, ~1!

where A5$Ex ,Hy ,Ez%, and hn5kz1nk0 , kz ,v are the
wave number and frequency of perturbations, andk0
52p/d, d is the period of the structure. Substituting Eq.~1!
into the Maxwell equations and applying the boundary co
dition on the ideal wallEt(x,z)ux5X0(z)50, whereEt is the

tangential component of the electric field, andx5X0(z) is
the equation of the waveguide boundary, after some ma
ematical manipulations described in many papers~see, for
example, Ref.@26#! we obtain the equation

(
n52`

`

aneihnzS 12
ihn«

kn
2

d

dzD
3Fcos„knX0~z!…1

2pc2~k22hn
2!n

~v2hnv !2kn

3cos„knX0~z!…sin„kn~X0~z!2xb!…G50, ~2!

FIG. 1. Geometry of the problem.
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where

an5
1

dE2d/2

d/2

Ez~0,z!e2 ihnzdz,

kn5A«~k22hn
2!, «512Ve

2/v2, n52I b /bg3I A ,
~3!

I A5mc3/e, k5v/c, g5~12v2/c2!21/2,

Ez(0,z) is thez component of the electric field on the wav
guide axis,I b is the beam current per unit length in th
transverse direction,I A is the Alfven current,v is the speed
of the beam,c is the speed of light, ande and m are the
charge and mass of in electron, respectively.

The traditional approach to the analysis of Eq.~2! @18–
20# provides the expansions cos„knX0(z)… and
sin„kn(X0(z)2xb)… into the Fourier series, resulting in th
equation

(
m52`

`

eimk0z (
n52`

`

Dmn~v,kz!an50,

from which the dispersion relation in the form of the infini
determinant

detuuDmn~v,kz!uu50, ~4!

linking v and kz , follows. However, attempts to analyz
such a relation numerically by truncating the infinite mat
to some reasonable size for the frequency within the reg
of plasma wave existence (v,Ve) was not successfu
@19,20#, since the solution obtained did not satisfy the
quirement of periodicity with respect to wave number a
cording to the Floquet theorem.@27#.

Below we offer an alternative formulation of the dispe
sion relation which provides the passage from unknown F
rier coefficientsan to the unknown periodical functionC(z),
linked with the total longitudinal electric field on the wav
guide axis by the simple relationC(z)5Ez(0,z)e2 ikzz and
the derivation of the IE for it. Substituting Eq.~3! into Eq.
~2!, and changing the order of summation and integration,
obtain the following IE over the structure period:

E
2d/2

d/2

G~z,z8!C~z8!dz850, zP~2d/2,d/2!, ~5a!

whereG(z,z8)5Ge(z,z8)1Gb(z,z8):

Ge~z,z8!5 (
n52`

`

Gen~z,z8!, ~5b!

Gen~z,z8!5eink0(z2z8)S 12
ihn«

kn
2

d

dzD cos„knX0~z!…,

Gb~z,z8!5 (
n52`

` 2pc2~k22hn
2!n

~v2hnv !2kn

3eink0(z2z8)cos„knX0~z!…sin@kn„X0~z!2xb…#.

~5c!
n

-
-

-

e

Equations~5b!, and ~5c! allow us to explore in detail the
analytical properties of the kernelG(z,z8). Evaluating
Ge(z,z8) at largen as

Gen~z,z8!5
1

2
@„11X8~z!…eikzX(z)eink0„z1X(z)2z8…

1„12X8~z!…e2 ikzX(z)e2 ink0„z2X(z)2z8…#,

~6!

whereX(z)5u«u1/2X0(z), we can conclude that the sum fo
Ge(z,z8) diverges at the pointsz85z6X(z). At these points
Ge(z,z8) cannot be approximated by the partial finite sum
GeN(z,z8)5(n52N

N Gen(z,z8), regardless on the numberN.
Thus the truncation of the infinite determinant~4!, which is
equivalent to approximating the singular kernel of IE~5a! by
finite sums having regular values in the vicinity of the si
gular points mentioned above seems not to be correct,
according to the theory of singular IE’s can lead to rou
mistakes in the final results. Meanwhile it should be poin
out that the beam part of the kernelGb(z,z8) is regular about
both variables.

In order to circumvent these difficulties, we separate
static part of the kernel, which just contains all singulariti
inherent to the general kernel,

Ge~z,z8!5Ge
st~z,z8!1Gr~z,z8!, ~7a!

where

Ge
st~z,z8!5 (

n52`

`

eink0(z2z8)S 12
i

hn

d

dzD cos„hnX~z!…,

~7b!

Gr~z,z8!5 (
n52`

`

eink0(z2z8)F cos~knX0~z!!2cos~hnX~z!!

2 i
d

dzS «hn

kn
2

cos„knX0~z!…1
1

hn
cos„hnX~z!…D G .

~7c!

It can be shown thatGr(z,z8) is regular about both variables
Representing cos„hnX(z)… and sin„hnX(z)… in terms of

exponents, and using relation

(
n52`

`

d~x1nd!5
1

2p (
n52`

`

eink0x,

we can take the integrals associated with the static part of
kernel in a closed analytical form:

E
2d/2

d/2

Ge
st~z,z8!C~z8!dz8

5
1

2
@eikzX(z)C„z1X~z!…„11X8~z!…

1e2 ikzX(z)C„z2X~z!…„12X8~z!…#. ~8!
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Such a transformation is fully correct if the function
f 6(z)5z6X(z) are monotonous, i.e.,uX8(z)u<1.

Thus, finally, we have an IE of the second kind with t
regular kernel, and shifts in the arguments of the unkno
function:

1

2
@eikzX(z)C„z1X~z!…„11X8~z!…1e2 ikzX(z)C„z2X~z!…

3„12X8~z!…#1E
2d/2

d/2

@Gr~z,z8!

1Gb~z,z8!#C~z8!dz850. ~9!

Thus, the obtained IE@Eq. ~9!# is mathematically rigorous if
the conditionuX8(z)u<1 holds~also see Ref.@27#!. It con-
tains all information about spectral properties of the syst
considered. Also, having solved it, we will be able to calc
late the field distribution over the entire waveguide.

III. QUASISTATIC APPROXIMATION

In the general case the IE~9! should be analyzed by nu
merical methods. However, in order to obtain more insi
into the properties of its solutions, here we consider the q
sistatic approximation, allowing us to greatly simplify i
kernel.

The relevant quasistatic equation can be easily obta
from Eq. ~9!, when the speed of light tends into infinity, an
assuming that the beam is nonrelativistic. This yields

Gr~z,z8!→0,

Gb~z,z8!→Gb
st~z,z8!52 (

n52`

` S 12
i

hn

d

dzD
3eink0(z2z8)

2pc2hnn

~v2hnv !2u«u1/2

3cos~hnu«u1/2xb!sin@hnu«u1/2
„X0~z!2xb…#.

~10!

The static part of the beam fraction of the kernelGb
st(z,z8)

can be calculated in a closed analytical form. For simplic
assumingxb50 and representing sin„hnX(z)… in Eq. ~10! in
terms of exponents, we rewriteGb

st(z,z8) in the form

Gb
st~z,z8!5

ipc2n

u«u1/2d
@eikzX(z)F~z1X~z!2z8!„11X8~z!…

1e2 ikzX(z)F„z2X~z!2z8…„12X8~z!…#, ~11!

where

F~x!5 (
n52`

`
hn

~v2hnv !2 eink0x.

The expression forF(x) can be reduced to a combinatio
of the table sums~see the Appendix!, and over the interva
xP(2d,d) can be represented as
n

-

t
a-

d

,

F~x!5
1

k0v2 F v

k0v
]

]D
11G f ~D,x!, ~12a!

where

f ~D,x!52p
exp@ iD~k0x2psgn~x!#

sinpD
, ~12b!

D5
v2kzv

k0v
, sgn~x!5H 1, x.0

21, x,0.

Note thatF(x) has a jump of the first kind atx50. The
accurate method of integration accounting this has b
shown in the Appendix. Making use~12a! and ~12b! the
integral term in Eq.~9! can be transformed to the~details can
be found in the Appendix!

E
2d/2

d/2

Gb
st~z,z8!C~z8!dz8

52
p in

b2u«u1/2S 11
v

k0v
]

]D D eiDk0z

sinpD

3$cospD@C1~11X8~z!!ei (v/v)X(z)

2C2~12X8~z!!e2 i (v/v)X(z)#1 i sinpD@w1~z!

3~11X8~z!!ei (v/v)X(z)2w2~z!

3~12X8~z!!e2 i (v/v)X(z)#%, ~13!

where

C65E
2d/26s

d/26s

exp~2 iDz!C~z!dz,

w6~z!5E
z6X(z)

d/26s

exp~2 iDz8!C~z8!dz8

2E
2d/26s

z6X(z)

exp~2 iDz8!C~z8!dz8,s

5X~d/2!.

Thus the static part of the beam fraction of the kern
Gb

st(z,z8) is reduced to a degenerated Volterra-type kern
allowing us, in principle, to transform the relevant IE into a
ordinary differential one.

Here we proceed more simply, assuming that the be
weakly modifies the temporal and spatial dependencies
plasma perturbations compared to the ‘‘cold’’ case, result
in only slow changes of their amplitudes and phases. T
most efficient interaction between the beam and plas
waves in such a case should be expected whenD.m, i.e.,
kz1mk05v/v, that corresponds to the resonance of t
beam with themth spatial harmonic of the plasma wav
field. Following this argument we can neglect the term wh
is proportional to sinpD in figure brackets in the right-han
side of Eq.~13!. Taking into account that for plasma-fille
devices the unequalityv/k0v!1 normally holds, we can
leave only the largest term~proportional to sin22pD), after
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taking the partial derivation with respect toD in Eq. ~13!. As
a result we obtain the equation

eikzX(z)
„11X8~z!…C„z1X~z!…1e2 ikzX(z)

„12X8~z!…

3C„z2X~z!…

5
in

b2u«u1/2S p cotpD2
v

k0v
p2

sin2pD
D

3@C1„11X8~z!…ei (v/v)X(z)

2C2„12X8~z!…e2 i (v/v)X(z)#. ~14!

Equation~14! hardly can be solved without further simplifi
cations, even without the beam (n50), since the unknown
function C(z) has shifts in the argument. In Sec. IV on
partial case will be considered when the approximate ana
cal solution can be obtained. This will enable us to obt
-

ti-
n

some insight about the properties of the solution, which c
be very useful for developing a more rigorous analysis.

IV. FIRST-ORDER CLOSED FORM SOLUTION

Obviously the Trivelpiece-Gould waves in the smoo
waveguide become electrostatic at frequencies nearVe , i.e.,
when u«u!1. In this region the conditionuX8(z)u<1 is sat-
isfied even for comparatively large ripples. Shifts in the
guments of the unknown functionC(z) on the left-hand side
of Eq. ~14! can be much less than its periodd. This gives us
the opportunity to expandC„z6X(z)… into the Taylor series,
thereby eliminating the shifts in its argument. So, after e
pansion in the first-order approximation, we have the fir
order inhomogeneous differential equation

C8~z!2 i f 0~z!C~z!5 f b~z!, ~15!

where
f 0~z!5
coskzX~z!1 iX8~z!sinkzX~z!

X~z!~sinkzX~z!2 iX8~z!coskzX~z!!
,

f b~z!5
in

b2u«u1/2S pcotpD2
v

k0v
p2

sin2pD DeiDk0z@C1~11X8~z!!ei (v/v)z2C2~12X8~z!!e2 i (v/v)z#

X~z!„i sinkzX~z!1X8~z!coskzX~z!…
.

d

ow
ion
As

n

the

m-
The general solution of Eq.~15! looks like

C~z!5eif(z)FC11E
0

z

f b~z8!e2 if(z8)dz8G , ~16!

wheref(z)5*0
z f 0(z8)dz8,C1 is an arbitrary constant.

Further, by calculation off b(z), we can use the ‘‘cold’’
solution C(z)'C1eif(z) that allows us to express the un
known constantsC6 in terms ofC1. Requiring a periodicity
of C(z): C(z1d)5C(z), yields the dispersion relation

expS 2 i E
0

d

f 0~z!dzD 215E
0

d

f b0~z!e2 if(z)dz, ~17!

where

f b0~z!5
nd

b2u«u1/2S v

k0v
p2

sin2pD
2pcotpD D I ~D!eiDk0z2 if(z)

3

sin
v

v
X~z!2 iX8~z!cos

v

v
X~z!

X~z!„sinkzX~z!2 iX8~z!coskzX~z!…
,

I ~D!5
1

dE2d/2

d/2

e2 iDk0zC~z!dz.
V. ‘‘COLD’’ SOLUTION AND ITS PROPERTIES

The first-order ‘‘cold’’ dispersion relation can be obtaine
from Eq. ~17! assuming thatf b0(z)50, which yields the set
of relations

E
0

d

f 0~z!dz522pm, m50,61,62, . . . . ~18!

Thus, instead of the infinite determinant~4!, which speci-
fies radial and axially shifted modes simultaneously, we n
have the infinite set of dispersion relations. Every dispers
relation is connected with a certain axially shifted branch.
a matter of fact, letkz(v) be the solution of Eq.~18! at m
50. Then it can easily be shown thatkn(v)5kz(v)1nk0 is
the solution of Eq.~18! for m5n, with an accuracy of the
order of u«u!1 for not very largeunu. The deviation from
exact periodicity is due to the approximate equation~15!
being used instead the exact one~14!. It can easily be seen
that if kz(v) andC(z) are the eigenvalue and eigenfunctio
of Eq. ~14!, respectively~without the beam! then kzm(v)
5kz(v)1mk0 is also an eigenvalue of~14! but with the
other eigenfunctionCm(z)5C(z)e2 imk0z. Sincekz(v) con-
tains, in turn, an infinite set of curves corresponding to
different radial modeskz(v)5$kzq(v)%, q51,2, . . . , we
have a so-called ‘‘dense’’ spectrum@17# when each point
within the rangev,Ve , 2`,kz,` in the (v,kz) plane
lies either on the curves given by the functionskzq(v), q
50,1,2, . . . or on the curves given by the functions
kzqm(v)5kzq(v)1mk0 , m50,1,2, . . . , or approach infi-
nitely closely to them. However, it should be especially e
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phasized that for a full definition of the total field on th
waveguide axisEz(0,z)5exp(ikzz)C(z) ~and consequently in
the whole waveguide as well!, it is sufficient to exploit any
single axially shifted set of eigenvalues~containing only ra-
dial modes! and relative eigenfunctions.

Turning to the approximate solution, we note that we c
consider only branch form50 in Eq.~18!, for example, with
the corresponding expressions for the periodical funct
C(z)5C1 exp„if(z)… which contain all spatial harmonics
The dispersion relation*0

df 0(z)dz50 defines only radial
modes enabling us to avoid the problem of the ‘‘dens
spectrum@17#. In the limit when the height of ripples tend
to zero„X(z)→u«u1/2x0…, this dispersion relation passes to
dispersion relation for a smooth planar waveguide filled w
homogeneous plasma, cos(kzu«u1/2x0)50, having solutions
like ordinary electrostatic Trivelpiece-Gould waves. Mea
while C(z) tends toC1 andEz(0,z) tends toC1eikzz, which
is also inherent for a smooth wall waveguide. It should
noted that such a limit for the branch withmÞ0 in Eq. ~18!
gives Cm(z)→C1e2 imk0z, but the corresponding value fo
Ez(0,z)5Cm(z)eikzmz again tends toC1eikzz.

Thus, the solutions associated with differentm’s in Eq.
~18! are equivalent, and we can restrict ourselves to a c
sideration of just one of them~for example withm50),
avoiding the problem of the ‘‘dense’’ spectrum since it co
tains only radial modes. Finally, note that sin
*0

dIm$ f 0(z)%dz[0, Eq. ~18! is equivalent to

E
0

d

Re$ f 0~z!%dz52pm, m50,61,62, . . . .

VI. CHERENKOV INSTABILITIES OF PLASMA SPATIAL
HARMONICS

Turning to the dispersion relation with the beam, note t
since f b0(z);n!1, from Eq. ~17! we can drive the more
simple relation

E
0

d

f 0~z!dz5 i E
0

d

f b0~z!e2 if(z)dz, ~19!

which coincides with Eq.~18! in leading order with respec
to n, and corresponds to the branch which tends to that
scribed by Eq.~18! with m50 at f b0(z)→0.

In the general case, the integrals in Eq.~18! can be cal-
culated by numerical methods. In order to obtain analyti
expressions for the increments of the instabilities, cons
the sinusoidally rippled waveguide X0(z)5x0(1
1a cosk0z), and expandf 0(z) and f b0(z) in a powers up to
the first order. The resulting dispersion relation can be w
ten in the form

cos~kzx0u«u1/2!5
nd

b2u«u1/2S v

k0v
p2

sin2pD
2p cotpD D

3uI ~D!u2sinS v

v
x0u«u1/2D , ~20!

where
n

n

’

-

e

n-

-

t

e-

l
er

t-

I ~D!5
1

dE2d/2

d/2

e2 iDk0zexpS 2 ia
kz

k0
sink0z1a cosk0zDdz.

One of the main distinctions of Eq.~20! from that ob-
tained earlier is that the right-hand side of Eq.~20! contains
the resonant denominators sin22pD and sin21pD which take
into account the interaction of the beam with all plasma h
monics simultaneously, and we can analyze the contribu
of each of them. They can lead to a widening at the region
unstable frequencies and wave numbers. The term pro
tional to sin21pD causes an asymmetry between fast a
slow space charge waves with respect to beam linesv
5kzv1mk0, which will be especially remarkable at low fre
quencies. It should be noted that in the limit ofa→0 and
D!1, the obtained equation~20! coincides exactly with that
for the smooth planar waveguide.

At frequencies whenD'm, we certainly have unstable
solutions. In this case the integralI (D) has a clear physica
meaning. It is not difficult to recognize that Eq.~3! is pro-
portional to themth Fourier coefficient of the longitudina
electric field on the waveguide axis:

I ~D!uD5m5
1

dE2d/2

d/2

e2 imk0z1 if(z)dz;
1

dE2d/2

d/2

e2 imk0zC~z!dz

[am . ~21!

Consequently the instability nearD'm can be conditionally
interpreted as the Cherenkov instability of themth spatial
plasma harmonic. The spatial growth rates for them can
estimated as

dmn5A3

2Fnx0

b2 S vmn

k0v D 2S d

x0u«~vmn!u1/2D Jm
2 S akz~vmn!

k0
D

3S 11
mk0

kz~vmn!
D 2G1/3

k0 , ~22!

where Jm(x) is the Bessel function of themth order, and
kz(vmn)5(vmn /v)1mk0 , vmn are the synchronous fre
quencies at which the shifted beam linesv5kzv1mk0 cross
with the curve for thenth radial mode~see Fig. 2!. They can
be approximately determined from the relation

S v

v
1mk0D u«~v!u1/2x05p~n11/2!,

m50,61,62, . . . , n50,1,2, . . .

It is interesting to compare the increment for the ‘‘21’’ spa-
tial harmonic~lowest radial mode! given by Eq.~22! for m
521 andn50 with that following from the traditional ap-
proach@18#:
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d82105A3

2Fpnx0

b2 S v210

k0v D 2ukz~v210!u
k0

a2G 1/3

k0 . ~23!

It can be easily seen that

d210.S 2d

px0u«~v210!u1/2D 1/3

d8210.d8210,

since (d/x0u«u1/2)@1 is provided in our approximation
Thus, the obtained value for the spatial growth rate turns
to be remarkably larger than that following from the previo
considerations based on the analysis of the truncated d
minant @Eq. ~4!#.

The obtained enhancement in the increment can be ph
cally interpreted by the following way. Within our approac
we are able to find a periodic functionC(z) which contains
all spatial harmonics of the plasma wave field. We also t
into account all beam harmonics which form the beam p
of the IE kernel@see Eq.~11!# also being periodical. Thus th
frequency providing the synchronization of the lowest be
harmonic with, for example, the21 spatial plasma har
monic, simultaneously provides the synchronization betw
the 1 spatial beam harmonic and the lowest spatial pla
harmonic, the21 beam spatial harmonic and the22 spatial
plasma harmonic, and so on, i.e., thenth spatial beam har
monic with the (n21)th spatial plasma harmonic. Each sp
tial beam harmonic amplifies the corresponding synchron
spatial harmonic of the plasma wave field. Hence the res
ing value for increment~22! takes into account all these e
ementary interactions and characterizes the growth of
total field at this frequency.

Meanwhile the value for increment~23! takes into ac-
count only the interaction between the lowest spatial be
harmonic and the21 spatial harmonic of the plasma wav
field. The contribution from resonant interactions betwe
the highest spatial beam and plasma harmonics tends t
lost; hence the behavior of the total field is changed.

The obtained estimations also predict a more effici
beam-plasma wave energy transfer in the nonlinear reg
Considering trapping as a basic mechanism of the Cheren

FIG. 2. Qualitative picture of the Cherenkov interaction betwe
the spatial plasma and beam harmonics~for clarity, only three
curves for radial plasma modes and three curves for spatial b
harmonics are shown!.
ut
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instability saturation, we can write the estimation for t
trapping amplitude of plasma oscillations@4#:

m~vph2v !25
eEzv

v
~24!

vph5v/(v/v1d).v(12dv/v), and d is a linear incre-
ment. Thus Eq.~24! shows that, in the saturation regime,Ez
scales with a linear increment liked2.

The energy density of plasma oscillations in the saturat
being proportional,uEzu2 scales with the increment liked4.
Hence the enhancement in the energy transfer predicte
our estimations is rather considerable. The energy densit
the plasma oscillations in the saturation regime is higher t
that following from conventional estimations by a factor
(d/x0u«u1/2)4/3@1.

VII. CONCLUSION

Introducing the plasma into periodical structures leads
crucial changes in their electrodynamic properties, regard
of the type of structure and plasma configuration. In the l
frequency regionv,Ve , an interesting sort of spectral be
havior such as a ‘‘dense’’ spectrum certainly appears@19#.
Conventional techniques can hardly be used to analyze s
spectral behavior, therefore, its effect on the operation
various experimentally realized plasma-filled devices such
BWO’s @5–7#, TWT’s @8#, pasotron’s, and some others h
not yet been studied.

In this paper a constructive approach allowing a cons
eration of beam interaction with low frequency plasm
waves in a periodical plasma-filled waveguide has been s
gested. It provides a possibility to obtain a greater und
standing of the numerical difficulties associated with t
analysis of such systems. It is shown that the relative bou
ary value problem is equivalent to a singular IE. The sing
larity in the kernel of the IE seems to be the main reason w
the conventional analysis in this case is hardly possible
principle, yielding the nonconvergence of the numerical
sults @18#. The simplest method of regularization is pr
posed, which provides a passage from the initial singular
~6! to the second type of IE with the regular kernel@Eq.
~10!#. As we can easily see from Eq.~10!, the singularity in
the kernel of the initial IE contributes to shifts of the u
known function argument, leading to significant distinctio
in the final results. In turn, the IE~10!, with a regular kernel,
also hardly permits direct numerical analysis, since its eig
values kzqm5kzq(v)1mk0(q50,1,2 . . . and m50,61,
62, . . . ), with corresponding eigenfunctionsCqm(z)
5Cq(z)e2 imk0z, where integer q numerates the radia
modes, cause the ‘‘dense’’ spectrum. However, it should
pointed out that any single axially shifted branch contain
only radial modes with corresponding eigenfunctions
enough to fully specify the total field distribution within th
waveguide, and others do not give us any new informat
concerning this matter. Thus to avoid the ‘‘dense’’ spectru
we must select only one branch from all axially shifted on

The obtained approximate solution demonstrates the a
lytical method of such a separation, thereby providing p
sage from a ‘‘dense’’ spectrum to a normal type of spectru

n

m
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with a further analysis of the latter. The obtained concr
expressions for the eigenvalues and eigenfunctions ca
used in a numerical analysis of more general cases which
be carried out on the basis of some iterative procedure.
second type of IE@Eq. ~10!# is certainly very suitable for this
aim.

Turning to the approximate solution, we note that it c
also have an independent meaning, providing a possibilit
understand in detail the peculiarities of beam-plasma in
action in periodical systems, and visually demonstratin
method of overcoming the problem of the ‘‘dense’’ spe
trum. Concerning the concrete results, it should be stres
that the static part of the field formed by the highest spa
plasma and beam harmonics can be of principal importa
The obtained values for the spatial growth rates turn ou
be remarkably larger than that obtained by the conventio
approach, providing a truncation of the infinite matrix@18#.

It should also be noted that the first-order approximat
considered cannot provide the full information about the f
tures of the plasma wave spectrum. In particular, it does
split the dispersion curves near the pointskz5(m/2)k0,
where a solution like Eq.~1! loses the property of linea
independence. Thus the obtained values for the spatial in
ments ~22! are valid if the synchronous point
(vmn , kzmn) are rather far from these points. It can b
shown that the effects of splitting of the dispersion curv
and formation of the forbidden bands can already be trea
in the second approximation, when we will have a seco
order differential equation instead of a first-order one@Eq.
~15!#. Analysis of this issue can comprise the subject of
separate paper.
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APPENDIX

For a calculation of the function

F~x!5 (
n52`

`
hneink0x

~v2hnv !2
, ~A1!

we use the representation

hn

~v2hnv !2 5
1

k0v2 F11
v

k0v
]

]DG S 1

n2D D ,
e
be
an
he

to
r-
a
-
ed
l
e.
o
al

n
-

ot

re-

s
ed
-

e

n-
le

r
k,
t.

,

n

whereD5(v2kzv)/k0v. After that it is enough to calculate
the sum

f ~D,x!5 (
n52`

`
eink0x

n2D
. ~A2!

Using the equalities

1

n2D
5

n

n22D2 1
D

n22D2 , ~A3!

(
n52`

`
neink0x

n22D2 52i (
n51

`
n sinnk0x

n22D2 , ~A4!

(
n52`

`
eink0x

n22D2 52(
n51

`
cosnk0x

n22D2 2
1

D2 , ~A5!

and expressions for table sums on the right-hand side of E
~A4! and ~A5! @28#, f (D,x) can be represented in the form

f ~D,x!52p
exp@2 iD„~2m11!p2k0x…#

sinpD
,

md<x<~m11/2!d. ~A6!

However, for practical calculations it is more convenient
use another representation which is valid within the inter
xP(2d,d):

f ~D,x!52p
exp@ iD„k0x2p sgn~x!…#

sinpD
. ~A7!

One can easily show that expressions~A6! and ~A7! are
equivalent over the pointed interval.

Substituting Eq.~12! into Eq. ~11!, we can transform the
term with the static part of the beam kernel in the followin
way:

E
2d/2

d/2

Gb
st~z,z8!C~z8!dz

52
p in

u«u1/2b2 S 11
v

k0v
]

]D D E
2d/2

d/2

@„11X8~z!…

3 f „D,z1X~z!2z8…eikzX(z)2„12X8~z!…

3 f „D,z2X~z!2z8…e2 ikzX(z)#C~z8!dz8. ~A8!

Note that whenzP(2d/2,d/2), the argument that function
f (D,y) belongs to the first term under integration on t
right-hand side of Eq.~A8! changes in the rangey
5y1(z,z8)5z1X(z)2z8P(2d1s,d1s), where s
5X(d/2). However, we can use Eq.~12b! for f (D,y) when
its argument is over the intervalyP(2d,d). To achieve this
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we merely shift the limits of integration on the equal valu
Due to the periodicity of the integrand with periodd, the
value of the integral does not change. Thus,

E
2d/2

d/2

f „D,y1~z,z8!…C~z8!dz8

5E
2d/21s

d/21s

f „D,y1~z,z8!…C~z8!dz. ~A9!

Now, whenzP(2d/2,d/2), the argument off (D,y) on the
right-hand side of Eq.~A9! changes in the rangey
5y1(z,z8)5z1X(z)2z8P(2d,d); consequently we can
use the representation~12b! for f (D,y). Manipulations with
d

. the second term on the right-hand side of Eq.~A8! are iden-
tical. As a result we have

E
2d/2

d/2

f „D,y2~z,z8!…C~z8!dz

5E
2d/22s

d/22s

f „D,y2~z,z8!…C~z8!dz, ~A10!

where y2(z,z8)5z2X(z)2z8. Substituting Eq.~12b! into
Eqs. ~A9! and ~A10!, and then transforming the right-han
side of Eq.~A8! with the help of Eqs.~A9! and~A10!, after
simple algebraic manipulations we obtain Eq.~13!.
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